2 min read

Maximizing the length of the trajectory of a projectile

Table of Contents

Problem

At what angle should you throw a projectile - subject to uniform gravity and ignoring air resistance - in order to maximize the length of its trajectory?

Solution

Without any loss of generality we can assume the velocity to be 11 m/s. Let θ\theta be the angle at which the projectile is thrown. We have

x=cosθty=sinθt12gt2\begin{aligned} x & = \cos\theta t \\\\ y & = \sin\theta t - \frac{1}{2}gt^{2} \end{aligned}

The length of the trajectory is given by,

L(t)=0tx˙2+y˙2dtL(t) = \int_{0}^{t}\sqrt{{\dot{x}}^{2} + {\dot{y}}^{2}}dt

When the projectile touches the ground again, t=2sinθg.t = \frac{2\sin\theta}{g}.

Therefore, we need to maximize,

L(θ)=02sinθg(cosθ)2+(sinθgt)2dt=02sinθg12sinθgt+g2t2dt=1g02sinθ12sinθt+t2dt=12g[sinθ+cos2θlog(1+sinθ)]12g[sinθ+cos2θlog(1sinθ)]=12g[2sinθ+cos2θlog(1+sinθ1sinθ)].\begin{aligned} L(\theta) &= \int_{0}^{\frac{2\sin\theta}{g}}\sqrt{\left( \cos\theta \right)^{2} + \left( \sin\theta - gt \right)^{2}}dt \\ &= \int_{0}^{\frac{2\sin\theta}{g}}\sqrt{1 - 2\sin\theta gt + g^{2}t^{2}}dt \\ &= \frac{1}{g}\int_{0}^{2\sin\theta}\sqrt{1 - 2\sin\theta t + t^{2}}dt \\ &= \frac{1}{2g}\left\lbrack \sin\theta + \cos^{2}\theta\log(1 + \sin\theta) \right\rbrack - \\ &\frac{1}{2g}\left\lbrack - \sin\theta + \cos^{2}\theta\log(1 - \sin\theta) \right\rbrack \\ &= \frac{1}{2g}\left\lbrack 2\sin\theta + \cos^{2}\theta\log(\frac{1 + \sin\theta}{1 - \sin\theta}) \right\rbrack. \end{aligned}

Here, we have made use of the following:

ax2+bx+cdx=(2ax+b)x(ax+b)+c4a((b24ac)log(2ax(ax+b)+c+2ax+b))8a32\begin{aligned} &\int\sqrt{ax^{2} + bx + c}dx \\ &= \frac{(2ax + b)\sqrt{x(ax + b) + c}}{4a} - \\ &\frac{\left( \left( b^{2} - 4ac \right)\log(2\sqrt{a}\sqrt{x(ax + b) + c} + 2ax + b) \right)}{8a^{\frac{3}{2}}} \end{aligned}

Differentiating L(θ)L(\theta) wrt to θ\theta and setting it equal to zero, we get,

2cosθ+2cosθ2sinθcosθlog(1+sinθ1+sinθ)=02cscθ=log(1+sinθ1sinθ).\begin{aligned} & 2\cos\theta + 2\cos\theta - \\ & 2\sin\theta\cos\theta\log\left( \frac{1 + \sin\theta}{1 + \sin\theta} \right) = 0 \\ & \Rightarrow 2\csc\theta = \log(\frac{1 + \sin\theta}{1 - \sin\theta}). \end{aligned}

Solving the above equation numerically, we get θ=0.9855\theta = 0.9855 rad =56.465.= \mathbf{56.465^{{^\circ}}}.