Numbrix
Just fill in the puzzle so the consecutive numbers follow a horizontal or vertical path (no diagonals).
Here is a hard numbrix puzzle
Python code using Z3
from z3 import *
import re
from itertools import combinations
def Abs(x):
return If(x >=0, x, -x)
class NumbricksSolver:
def __init__(self, n):
self.n = n
self.X = [[Int("x_%s_%s" % (i+1, j+1)) for j in range(n)]
for i in range(n)]
self.s = Solver()
self.s.add([And(1 <= self.X[i][j], self.X[i][j]<= n*n) for i in range(n) for j in range(n)])
self.s.add([And(Distinct([self.X[i][j] for i in range(n) for j in range(n)]))])
for i in range(n):
for j in range(n):
= []
ns if (i - 1) >= 0:
self.X[i-1][j])
ns.append(if (i + 1) < n:
self.X[i+1][j])
ns.append(if (j - 1) >= 0:
self.X[i][j-1])
ns.append(if (j + 1) < n:
self.X[i][j+1])
ns.append(= Or(*[And(*[Abs(self.X[i][j]-nb)==1 for nb in nbs])
c_n1_ne for nbs in combinations(ns, 2)])
= Or(*[Abs(self.X[i][j]-nb)==1 for nb in ns])
c_1_or_e self.s.add(If(self.X[i][j] == 1, c_1_or_e, If(self.X[i][j] == n*n, c_1_or_e, c_n1_ne)))
def load_puzzle(self, puzzle):
for i, line in enumerate(re.split("\n", puzzle)):
for j, v in enumerate(re.split(",", line)):
if v != "_":
self.s.add(And(self.X[i][j] == int(v)))
def output_solution(self):
= self.s.model()
m for i in range(self.n):
print(" ".join(['{:>2}'.format(str(m.evaluate(self.X[i][j])))
for j in range(self.n)]))
print("\n")
def solve(self, puzzle):
self.load_puzzle(puzzle)
if self.s.check() == sat:
self.output_solution()
else:
print(self.s)
print("Failed to solve.")
= '''9,_,11,_,19,_,77,_,73
puzzle _,_,_,_,_,_,_,_,_
7,_,_,_,_,_,_,_,71
_,_,_,_,_,_,_,_,_
31,_,_,_,_,_,_,_,67
_,_,_,_,_,_,_,_,_
35,_,_,_,_,_,_,_,57
_,_,_,_,_,_,_,_,_
37,_,41,_,45,_,47,_,55'''
= NumbricksSolver(9)
ns ns.solve(puzzle)
Solution
Here is the solution to the above puzzle
9 10 11 18 19 78 77 74 73
8 13 12 17 20 79 76 75 72
7 14 15 16 21 80 81 70 71
6 5 4 3 22 63 64 69 68
31 30 29 2 23 62 65 66 67
32 33 28 1 24 61 60 59 58
35 34 27 26 25 50 51 52 57
36 39 40 43 44 49 48 53 56
37 38 41 42 45 46 47 54 55