Can You Reach the Edge of the Square?
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A couple of nice geometric probability puzzles from Fiddler on the Proof.
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1 Random walk in unit square

You start at the center of the unit square and then pick a random direction to move in, with all directions
being equally likely. You move along this chosen direction until you reach a point on the perimeter of the

unit square. On average, how far can you expect to have traveled?

1.1 Analytical Solution

Consider a unit square with corners at (0, 0), (1, 0), (1, 1), and (0, 1). From symmetry, we see that we can
restrict the mean length calculations to the triangle with vertices (%, %), (1, %) and (1, 1). Pick a & uniformly

in [0, Z]. Distance to the right edge of the triangle is given by:

4(6) = Tise (1.1)

The expected distance is:
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1.2 Monte-Carlo simulation in Python

From the Monte-Carlo simulation, below we see the expected distance is 0.5611 which is very close to the

result obtained analytically.

import numpy as np

def simulate(n=1_000 000):
theta = np.random.uniform(@, np.pi/4, n)
return 0.5 / np.cos(theta)

simulated = simulate().mean()
print(f"Simulated: {simulated:.6f}")

2 Random walk in unit cube

Now, you start at the center of a unit cube. Again, you pick a random direction to move in, with all
directions being equally likely. You move along this direction until you reach a point on the surface of the

unit cube. On average, how far can you expect to have traveled?

2.1 Analytical Solution

Consider a unit cube with corners at (0, 0, 0) and (1, 1, 1). You have to start at the center (%, %, %) and pick a

random direction uniformly which is equivalent to picking a random point uniformly on the unit sphere. A
direction in 3D is parameterized using spherical coordinates (5, g?) where & the azimuthal angle is in [0, 27)

and ¢ the polar angle from z-axis is in [0, 7].
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2.1.1 Generating uniformly distributed points on a sphere

Let » be a point on the unit sphere S. We want the probability density /(») to be constant for a uniform
distribution. Thus f(v) = 4%{ since fS f(r)dd4d = 1and j;, dA4 = 47. We want to represent points using the
parameterization in 6 and ¢ and find the corresponding probability density function (6, ¢) that maps to a
uniform distribution on the sphere. We can obtain a uniform distribution by enforcing

f(»)dd = £ d4 = £(8, ) d9 dp since £(v) d4 is the probability of finding a point in an area d4 about »
on the sphere. Because d4 = sin(p) dg dd, it follows that

£(8,9) = £ sin(p). (2.3)

2.1.2 Calculating the expected distance

From symmetry, we see that we can restrict ourselves to one fourth of a face of the cube to calculate the
expected distance. It is easy to see that the distance from the center of the cube to a point on the surface of

the cube is given by

1

The expected distance is therefore:
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(2.5)

2.1.3 Python code for numerical integration

import numpy as np
from scipy import integrate

resultl, errl = integrate.dblquad/(
lambda y, x: 3/(np.pi*np.cos(x)), 0, np.pi/4,
lambda x: np.arctan(l/np.cos(x)),
lambda x: np.pi/2)

print(f"Integral: {resultl:.10f}")
2.2 Monte-Carlo simulation

2.2.1 Sampling

Our goal is to find and then draw samples from the probability distribution that maps from the ¢ — @ plane

to a uniform distribution on the sphere.

We marginalize the joint distribution calculated above to get the p.d.f of ¢ and ¢:

6= [ fo.e)do= 5

re)= [ .9y a0 = 2
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It is easy to generate samples for & as f(¢). To generate samples for @ we use the Inverse Transform
Sampling method that allows us to sample a general probability distribution using a uniform random

number. For this, we need the cumulative distribution function of @:

Fe) = [ F(9)d5 = 3(1- cosp) 27)

The algorithm for sampling the distribution using inverse transform sampling is then:
* Generate a uniform random number # from the distribution %[0, 1].
* Compute ¢ such that F(¢) = u,ie. F (u).

* Take this ¢ as a random number drawn from the distribution £(g).
In our case, F ' (#) = arccos(1 — 2u).

From the Monte-Carlo simulation, below we see the expected distance is 0.6106855 which is very close to the

result obtained above.
2.2.2 Simulation in Python

import numpy as np

def simulate random walk 3d(num simulations=1000000):
x0, y0, z0 = 0.5, 0.5, 0.5

theta = np.random.uniform(0, 2 * np.pi, num_simulations)
phi = np.arccos(1l-2*np.random.random(num_simulations))

dx = np.sin(phi)*np.cos(theta)
dy = np.sin(phi)*np.sin(theta)
dz = np.cos(phi)

t right = np.where(dx > 0, (1 - x0) / dx, np.inf)
t left = np.where(dx < 0, -x0 / dx, np.inf)

t front = np.where(dy > 0, (1 - y0) / dy, np.inf)
t back = np.where(dy < 0, -y0 / dy, np.inf)

t top = np.where(dz > 0, (1 - z0) / dz, np.inf)

t bottom = np.where(dz < 0, -z0 / dz, np.inf)

# Minimum distance
distances = np.minimum(
np.minimum(np.minimum(t_right, t left),
np.minimum(t_front, t back)),
np.minimum(t_top, t_bottom)
)

return distances

distances = simulate random walk 3d(100000000)
print(f"Simulated: {np.mean(distances):.6f}")

3 References

http://corysimon.github.io/articles/uniformdistn-on-sphere/
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