Cozy Circles In Regular Polygons

Vamshi Jandhyala

4/21/2025

A nice puzzle by Xavier Durawa for the week of 4/20.

1 Puzzle

You start with a regular triangle. At the midpoint of each side you draw a circle on the inside
of the triangle where the circle is tangent to the side. Each circle is the same size and its
radius is maximized such that the interior circles touch each other. Below is a diagram to

illustrate.

Figure 1: Circles in a triangle

Figure 2: Circles in a square

If we consider a regular triangle, what is the ratio of the area of the 3 interior circles to the
area of the triangle? How about a square? How about a regular n-gon?

1/7

2 Solution

Let the regular polygon have n sides and its side be s.Let the radius of each circle be r. Let us
consider two adjacent sides of a regular polygon. Let C be the common vertex, points F and
D be the points of tangency of the circles and points G and H be the centers of the two circles.
The figure below illustrates these points when the regular polygon is an equilateral triangle.

Figure 3: Circles in a triangle

The internal angle at C is

(2.1)

It is easy to see that length of FD is

|[FD| = 2(%) cos(ﬂ_;nf)n) =s cos(g). (2.2)

We have,

/GFD = ZHDF = 7 —

As |GF| = |DH| = r and |GH| = 2r, we also have,
[FD| = 2r cos(£GFD) + |GH]|

= scos(%) zzr(cos(ﬂ(zg 2))+ 1) 24

scos(%)
2(sin(Z)+1)

=7 =

The area of a n-sided regular polygon of side s is given by,
2

% cot(g). (2.5)

The area of all the circles is given by,

2/7

The required ratio is therefore,

n_ sin(%)
2 (sin(Z)+1)2'
For a triangle, n = 3 so the ratio is,
o V3

s
2(] +§)2 T 7143

For a square, n = 4 so the ratio is,

(ST
—
+
—
N
Il
w
+
N
9

3/7

(2.6)

3 Python code

The Python code to draw the circles for a given regular polygon is given below. Here is some
sample output:

Figure 4: Circles in a hexagon

import numpy as np

import matplotlib.pyplot as plt

from matplotlib.patches import Polygon, Circle
import math

def draw regular polygon with circles(n,
polygon edge color='black',
polygon fill color='none',
circle color='blue’',
show_figure=True):
Draw a regular polygon with n sides and identical circles that touch each side at
its midpoint.

Parameters:
n : int

Number of sides in the polygon
side length : float

Length of each side of the polygon
circle radius : float

Radius of each circle
polygon edge color : str

Color of the polygon edge
polygon fill color : str

Color of the polygon fill (use 'none' for transparent)
circle color : str

Color of the circles

4/7

show figure : bool
Whether to show the plot immediately

Returns:
matplotlib.figure.Figure
The figure containing the drawing
Create figure
fig = plt.figure(figsize=(8, 8))
ax = fig.add subplot(111)

Calculate the radius of the circumscribed circle
R=1/ (2 * math.sin(math.pi / n))

Calculate coordinates for the polygon vertices
vertices = []
for 1 in range(n):
angle = 2 * math.pi * i / n
vertices.append((R * math.cos(angle), R * math.sin(angle)))

Draw the polygon
polygon = Polygon(vertices, closed=True, edgecolor=polygon edge color,
facecolor=polygon fill color if polygon_ fill color != 'none'
else 'none',
alpha=0.3 if polygon fill color != 'none' else 1)
ax.add patch(polygon)

circle radius = math.cos(math.pi/n)/(2*(1+math.sin(math.pi/n)))

For each side, calculate circle center position
for i in range(n):
j=(1+1)%n

Calculate midpoint of the current side
midpoint x = (vertices[i][O] + vertices[j1[0]) / 2
midpoint y = (vertices[i][1] + vertices[j1[1]) / 2
Calculate the normal vector to the side

dx = vertices[j][0] - vertices[i][0]

dy = vertices[j][1] - vertices[i][1]

Rotate 90 degrees to get the normal vector (perpendicular to side)
normal_x = -dy
normal_y = dx

Normalize the normal vector

normal length = math.sqgrt(normal x**2 + normal y**2)
normal_x = normal _x / normal_length

normal_y = normal y / normal_length

Check if normal points inward (toward center of polygon)

5/7

center_to mid x = midpoint x
center _to mid y = midpoint y
dot_product = normal x * center_to mid x + normal_y * center_to mid y

If dot product is positive, normal points outward, so invert it
if dot_product > 0O:

normal_x = -normal X

normal y = -normal_y

Calculate the center of the circle
The circle center is at distance circle radius from the midpoint along the
normal

circle center x
circle center y

midpoint x + normal x * circle_radius
midpoint y + normal y * circle radius

Draw the circle

circle = Circle((circle center x, circle center_ y), circle radius,
fill=False, edgecolor=circle_color)

ax.add patch(circle)

Set equal aspect ratio and limits
ax.set aspect('equal')

margin = R * 1.2

ax.set xlim(-margin, margin)

ax.set ylim(-margin, margin)

Remove axis, grid, and frame
ax.set axis off()

if show figure:
plt.tight layout()
plt.show()

return fig

Draw a hexagon with circles

figl = draw_regular_polygon with circles(
n=6, # Hexagon
polygon edge color='black',
polygon fill color='none',
circle color='red’,
show_figure=False

Draw a triangle with circles

fig2 = draw regular polygon with circles(
n=3, # Triangle
polygon edge color='black',
polygon fill color='none',
circle color='red',
show _figure=False

6/7

Draw a triangle with circles
fig3 = draw _regular polygon with circles(

n=4, # Triangle
polygon edge color='black',
polygon fill color='none',

circle color='red',

show figure=False

Display the figures

plt.
plt.
plt.
plt.
plt.
plt.
plt.

figure(figl.number)

savefig('hexagon with circles.png', bbox inches='tight', dpi=100)
figure(fig2.number)

savefig('triangle with circles.png', bbox inches='tight', dpi=100)
figure(fig3.number)

savefig('square with circles.png', bbox inches='tight', dpi=100)
show()

717

	Puzzle
	Solution
	Python code

