2 min read

How Do You Like Them Rectangles?

Table of Contents

Riddler Express

Area puzzle

Solution

The length of the top rectangle = 24/4=6 in24/4 = 6 \ in.

The length of the bottom rectangle = 6+3+2=11 in6+3+2=11 \ in.

The height of the bottom rectangle = 44/11=4 in44/11 = 4 \ in

Riddler Classic

Area puzzle

Solution

Let xinx in and yiny in be the length and height of the shaded rectangle.

We have the following constraints:

(14−x)y=45(11−y)x=326611−y<14  ⟹  y<447\begin{aligned} (14-x)y &=& 45 \\ (11-y)x &=& 32 \\ \frac{66}{11-y} &<& 14 \implies y < \frac{44}{7} \end{aligned}

Subtracting (2) from (1) we have 14y−11x=1314y - 11x = 13.

Substituting y=13+11x14y = \frac{13 + 11x}{14} in (1), we have

13+11x−13x/14−11x2/14=45  ⟹  11x2−141x+448=0  ⟹  x=141±1412−4⋅11⋅4482⋅11  ⟹  x=7 and y=457 or x=6411 and y=112\begin{aligned} 13 + 11x - 13x/14 - 11x^2/14 &= 45 \\ \implies 11x^2 - 141x + 448 &= 0 \\ \implies x &= \frac{141 \pm \sqrt{141^2 - 4 \cdot 11 \cdot 448}}{2 \cdot 11} \\ \implies x = 7 \ and \ y = \frac{45}{7} \ or& \ x = \frac{64}{11}\ and \ y = \frac{11}{2} \end{aligned}

The first solution has to be discarded because of constraint (3).

The area of the shaded region is xy=6411112=32 in.2xy = \frac{64}{11} \frac{11}{2} = 32 \ in.^2