Classical Plane Geometry

My solutions to the problems in the excellent book on Problem Solving by Loren Larson.

By Vamshi Jandhyala in mathematics problem solving

May 5, 2020

Problem 8.1.12

We are given an inscribed triangle $ABC$. Let $R$ denote the circumradius; let $h_a$ denote the altitude AD.

a. Show that triangles $ABD$ and $ALC$ are similar, and hence that $h_a=2R=bc$. b. Show that the area of $\Delta ABC$ is $abc/4R$.

Solution

a. In triangles $ABC$ and $ALC$, $\angle ABC$ is equal to $\angle ALC$ and $\angle ACL = \angle BAC= 90 ^\circ$. Therefore triangles $ABD$ and $ALC$ are similar.We also have

$$ \begin{align*} \frac{c}{h_a} &= \frac{2R}{b}\\
\implies h_a &= \frac{bc}{2R} \end{align*} $$

b. Area of the triangle $ABC$ is

$$ \begin{align*} \frac{1}{2}ah_a &= \frac{1}{2}a\frac{bc}{2R} = \frac{abc}{4R} \end{align*} $$

Problem 8.1.13

The radius of the inscribed circle of a triangle is $4$,and the segments into which one side is divided by the point of contact are $6$ and $8$.Determine the other two sides.

Solution

The sides of the triangle $14,6+x$ and $8+x$.Hence, $s=(14+6+x+8+x)/2=14+x$.

$$ \begin{align*} \Delta = \sqrt{(14+x)\cdot x \cdot 8 \cdot 6} &= 4(14+x) \\
\implies 14 + x &= 3x \\
\implies x &= 7 \end{align*} $$

The other two sides of the triangle are $13$ and $21$.

Problem 8.1.14

Triangles $ABC$ and $DEF$ are inscribed in the same circle.Prove that

$$ \begin{align*} sin A + sin B+ sin C = sin D + sin E + sin F \end{align*} $$

if and only if the perimeters of the given triangles are equal.

Let $a_i,b_i,c_i$ for $i=1,2$ be the sides of the two triangles and $R$ the circumradius. We have,

Solution

$$ \begin{align*} sin A + sin B+ sin C &= sin D + sin E+ sin F \\
\iff \frac{a_1}{2R} + \frac{b_1}{2R} + \frac{c_1}{2R} &= \frac{a_2}{2R} + \frac{b_2}{2R} + \frac{c_2}{2R} \\
\iff a_1 + b_1+ c_1 &= a_2 + b_2+ c_2 \end{align*} $$

Problem 8.1.15

In the following figure, $CD$ is a half chord perpendicular to the diameter $AB$ of the semicircle with center $O$. A circle with center $P$ is inscribed as shown in Figure 8.13, touching $AB$ at $E$ and arc $BD$ at $F$.Prove that $\Delta AED$ is isoceles.

Solution

The key observation is that $O,P$ and $F$ are collinear. This is because the circle $P$ is tangent to semicircle at $F$. Let $r$ be the radius of circle $P$ and $R$ be that of the semicircle. Then $OP=R-r$ and from the right triangle $OPE$,we get

$$ \begin{align*} (R-r)^2 = r^2 + (r+OC)^2 \end{align*} $$

Also, $R^2=OC^2+CD^2$ from the right triangle $OCD$.Combining these two equations we get:

$$ \begin{align*} DC^2 = r^2 + 2rOC + 2rR \end{align*} $$

But

$$ \begin{align*} AE = R + r + OC \end{align*} $$

Therefore,

$$ \begin{align*} AE^2 = r^2 + 2r(R+OC) + (R+OC)^2 = CD^2 + AC^2 \end{align*} $$

Since $AD^2=CD^2+AC^2$, $AE=AD$.

Problem 8.1.16

Find the length of a side of an equilateral triangle in which the distances from its vertices to an interior point are $5,7,$ and $8$.

Solution

We have

$$ \begin{align*} cos\theta = \frac{5^2+8^2-7^2}{2\cdot5\cdot8} = \frac{1}{2} \end{align*} $$

We also have

$$ \begin{align*} cos (60^\circ + \theta) = \frac{1}{2}\cdot\frac{1}{2} - \frac{\sqrt{3}}{2}\cdot\frac{\sqrt{3}}{2} &= \frac{5^2+8^2-s^2}{2\cdot5\cdot8}\\
\implies s^2 &= 129 \end{align*} $$

Problem 8.4.5

Let $A_0,A_1,A_2,A_3,A_4$ divide a unit circle into five equal parts.Prove that the chords $A_0A_1$, $A_0A_2$ satisfy

$$ \begin{align*} (A_0A_1 \cdot A_0A_2)^2 = 5 \end{align*} $$

Solution

If $A_0=1$,then $A_1=e^{i2\pi/5}$ and $A_2=e^{-i2\pi/5}$.We have

$$ \begin{align*} (A_0A_1 \cdot A_0A_2)^2 \\
= (e^{i2\pi/5}-1)( e^{-i2\pi/5}-1)(e^{-i2\pi/5}-e^{i2\pi/5})(e^{i2\pi/5}-e^{-i2\pi/5}) \\
= 4(1-cos(2\pi/5))(1-cos(4\pi/5)) \\
= 8(1-cos^2(\pi/5))(1+cos(\pi/5)) \end{align*} $$

When $5\theta=\pi$, we have

$$ \begin{align*} cos3\theta &= -cos2\theta \\
\implies 4cos^3\theta - 3cos\theta &= -2cos^2\theta+1 \\
\implies 4cos^3\theta +2cos^2\theta- 3cos\theta -1 &=0 \end{align*} $$

$$ \begin{align*} cos4\theta &= -cos\theta \\
\implies 8cos^4\theta - 8cos^2\theta + 1 &= -cos\theta \\
\implies 8cos^2\theta(cos^2\theta -1) &= -(1+cos\theta) \\
\implies 8cos^2\theta(cos\theta -1) &= -1 \\
\implies 8cos^3\theta - 8cos^2\theta +1 &= 0 \end{align*} $$

From the above two equations, we have

$$ \begin{align*} 4cos^2\theta-2cos\theta -1 = 0 \end{align*} $$

Therefore, $cos\theta = \frac{\sqrt{5}+1}{4}$.

Therefore,

$$ \begin{align*} (A_0A_1 \cdot A_0A_2)^2 &= 8(1-cos^2(\pi/5))(1+cos(\pi/5)) \\
&= 8(\frac{10-2\sqrt{5}}{16})(\frac{\sqrt{5}+5}{4}) = 5
\end{align*} $$

Problem 8.4.6

Given a point on the circumference of a unit circle and the vertices $A_1,A_2,\dots,A_n$ of an inscribed regular polygon of $n$ sides,prove that $PA_1^4+PA_2^4+\dots+PA_n^4$ is a constant (i.e., independent of the position of $P$ on the circumference).

Solution

The vertices of the regular polygon can be represented by $e^{i2\pi k/n}$ where $k=0,1,2,\dots,n-1$. Let $z$ be any point on the circumference of the circle. We have

$$ \begin{align*} PA_1^4+PA_2^4+\dots+PA_n^4 \\
= \sum_{k=0}^{n-1} \left((z-e^\frac{i2\pi k}{n})(\overline{z}-e^{-\frac{i2\pi k}{n}}\right)^2 \\
= \sum_{k=0}^{n-1} \left(2-z e^{-\frac{i2\pi k}{n}} -\overline{z}e^\frac{i2\pi k}{n}\right)^2 \\
= \sum_{k=0}^{n-1} 4 + z^2e^{-\frac{i4\pi k}{n}} + \overline{z}^2e^\frac{i4\pi k}{n} -4z e^{-\frac{i2\pi k}{n}} -4\overline{z}e^\frac{i2\pi k}{n} + 2\\
= 6n \end{align*} $$

Problem 8.4.7

Let $G$ denote the centroid of triangle $ABC$.Prove that

$$ \begin{align*} 3(GA^2+GB^2+GC^2)=AB^2+BC^2+CA^2 \end{align*} $$

Solution

WLOG, we can assume that the centroid of the triangle with vertices at $A(z_1)$,$B(z_2)$ and $C(z_3)$ is located at $0$. We then have $z_1+z_2+z+3=0$.

$$ \begin{align*} AB^2+BC^2+CA^2 = \\
(z_1-z_2)(\overline z_1-\overline z_2)+ (z_2-z_3)(\overline z_2-\overline z_3)+ (z_3-z_1)(\overline z_3-\overline z_1) \\
= z_1\overline z_1 + z_2\overline z_2-z_2\overline z_1 - z_1\overline z_2 + z_2\overline z_2 + z_3\overline z_3-z_2\overline z_3 - z_3\overline z_2 + \\
z_3\overline z_3 + z_1\overline z_1-z_1\overline z_3 - z_3\overline z_1 \\
= 2(z_1\overline z_1 + z_2\overline z_2 +z_3\overline z_3) \\ - \overline z_1(z_2 + z_3) - \overline z_2(z_1 + z_3) - \overline z_3(z_1 + z_2)\\
= 2(z_1\overline z_1 + z_2\overline z_2 +z_3\overline z_3)- \overline z_1(-z_1) - \overline z_2(-z_2) - \overline z_3(-z_3)\\
= 3(z_1\overline z_1 + z_2\overline z_2 +z_3\overline z_3) = 3(GA^2+ GB^2+ GC^2) \end{align*} $$

Problem 8.4.8

Let $ABCDEF$ be a hexagon in a circle of radius $r$. Show that if $AB=CD=EF=r$, then the midpoints of $BC,DE$ and $FA$ are the vertices of an equilateral triangle.

Solution

If $O$ is the center of the circle circumscribing the hexagon, $OAB$, $OCD$ and $OEF$ are equilateral triangles. If $A,C$, and $E$ are represented by $z_1,z_2$ and $z_3$, the coordinates of $B,D$ and $F$ are $z_1e^{i\pi/3}$, $z_2e^{i\pi/3}$ and $z_3e^{i\pi/3}$.The midpoints of $BC$, $DE$ and $FA$ are $(z_1e^{i\pi/3} + z_2)/2$, $(z_2e^{i\pi/3} + z_3)/2$ and $(z_3e^{i\pi/3} + z_1)/2$.

Whenever $c_1,c_2$ and $c_3$ are complex numbers that are the vertices of an equilateral triangle, we have

$$ \begin{align*} c_1^2+c_2^2+c_3^2 = c_1 c_2 + c_2 c_3 + c_3 c_1 \end{align*} $$

We have,

$$ \begin{align*} \left(\frac{z_1e^{i\pi/3} + z_2}{2}\right)^2 + \left(\frac{z_2e^{i\pi/3} + z_3}{2}\right)^2 +
\left(\frac{z_3e^{i\pi/3} + z_1}{2}\right)^2 \\
= \frac{z_1^2e^{i2\pi/3} + z_2^2 + 2z_1 z_2 e^{i\pi/3}}{4} + \frac{z_2^2e^{i2\pi/3} + z_3^2 + 2z_1 z_3 e^{i\pi/3}}{4} \\
+ \frac{z_3^2e^{i2\pi/3} + z_1^2 + 2z_1 z_3 e^{i\pi/3}}{4} \\
= (z_1^2(e^{i2\pi/3}+1) + z_2^2(e^{i2\pi/3}+1) + z_3^2(e^{i2\pi/3}+1) + 2z_1 z_2 e^{i\pi/3} \\
+ 2z_2 z_3 e^{i\pi/3} +2z_3 z_1 e^{i\pi/3})/4\\
= (z_1^2e^{i\pi/3} + z_2^2e^{i\pi/3} + z_3^2e^{i\pi/3} + \\
2z_1 z_2 e^{i\pi/3}+ 2z_2 z_3 e^{i\pi/3} +2z_3 z_1 e^{i\pi/3})/4 \end{align*} $$

We also have,

$$ \begin{align*} \left(\frac{z_1e^{i\pi/3} + z_2}{2}\right) \left(\frac{z_2e^{i\pi/3} + z_3}{2}\right) + \left(\frac{z_2e^{i\pi/3} + z_3}{2}\right) \left(\frac{z_3e^{i\pi/3} + z_1}{2}\right) \\
+\left(\frac{z_3e^{i\pi/3} + z_1}{2}\right) \left(\frac{z_1e^{i\pi/3} + z_2}{2}\right) \\
= (z_1^2e^{i\pi/3} + z_2^2e^{i\pi/3} + z_3^2e^{i\pi/3} \\
+ z_1 z_2(1 + e^{i\pi/3}+e^{i2\pi/3}) + z_2 z_3(1 + e^{i\pi/3}+ e^{i2\pi/3}) \\
+ z_3 z_1(1 + e^{i\pi/3}+ e^{i2\pi/3})/4 \\
= (z_1^2e^{i\pi/3} + z_2^2e^{i\pi/3} + z_3^2e^{i\pi/3} \\
+ 2z_1 z_2 e^{i\pi/3}+ 2z_2 z_3 e^{i\pi/3} +2z_3 z_1 e^{i\pi/3})/4 \end{align*} $$

Therefore, the midpoints of $BC$, $DE$ and $FA$ form an equilateral triangle.

Problem 8.4.9

If $z_1,z_2,z_3$ are such that $\vert z_1 \vert=\vert z_2 \vert= \vert z_3 \vert=1$ and $z_1+z_2+z_3=0$,show that $z_1,z_2,z_3$ are the vertices of an equilateral triangle inscribed in a unit circle.

Solution

The lengths of the three medians of the triangle are given by

$$ \begin{align*} \left\lvert \frac{z_1+z_2-2z_3}{2} \right\rvert &= \left\lvert \frac{-z_3-2z_3}{2} \right\rvert = \frac{3}{2}\\
\left\lvert \frac{z_1+z_3-2z_2}{2} \right\rvert &= \left\lvert \frac{-z_2-2z_2}{2} \right\rvert = \frac{3}{2}\\
\left\lvert \frac{z_2+z_3-2z_1}{2} \right\rvert &= \left\lvert \frac{-z_1-2z_1}{2} \right\rvert = \frac{3}{2} \end{align*} $$

As the lengths of the three medians are equal, the triangle whose vertices are $z_1,z_2$ and $z_3$ is an equilateral triangle.

Problem 8.4.10

Show that $z_1,z_2,z_3$ form an equilateral triangle if and only if

$$ \begin{align*} z_1^2+z_2^2+z_3^2 = z_1z_2 + z_2z_3+z_3z_1 \end{align*} $$

Solution

Rotating one side by $60^{\circ}$ we get the second side in an equilateral triangle, so we have

$$ \begin{align*} z_3-z_1 = (z_2-z_1)e^{i\pi/3} \\
\iff \frac{z_3-z_1}{z_2-z_1} - \frac{1}{2} = i\frac{\sqrt{3}}{2} \\
\iff \frac{(2z_3-z_1-z_2)^2}{4(z_2-z_1)^2} = \frac{-3}{4} \\
\iff 4z_3^2 + z_1^2 + z_2^2 +2z_1z_2-4z_3z_1-4z_3z_2 \\ = -3z_2^2-3z_1^2+6z_2z_1 \\
\iff 4z_3^2 + 4z_1^2 + 4z_2^2 = 4z_1z_2 + 4z_2z_3 + 4z_3z_1 \\
\iff z_1^2+z_2^2+z_3^2 = z_1z_2 + z_2z_3+z_3z_1 \end{align*} $$

Problem 8.4.11

The three points in the complex plane which correspond to the roots of the equation

$$ \begin{align*} z^3 -3pz^2 + 3qz -r = 0 \end{align*} $$

are the vertices of a triangle.

a. Prove that the centroid of the triangle is the point corresponding to $p$.

b. Prove that $ABC$ is an equilateral triangle if and only if $p^2=q$.

Solution

If $z_1,z_2,z_3$ are the roots of the above equation, we have

$$ \begin{align*} z_1+z_2+z_3 &= 3p\\
z_1z_2+z_2z_3+z_3z_1 &= 3q\\
\end{align*} $$

a. If $z_1,z_2,z_3$ are the vertices of a triangle,we have the centroid at $(z_1+z_2+z_3)/3 = p$.

b. If $z_1,z_2,z_3$ are the vertices of an equilateral triangle, we have

$$ \begin{align*} z_1^2+z_2^2+z_3^2 &= z_1z_2 + z_2z_3+z_3z_1 \\
\implies 9p^2-6q &= 3q \\
\implies p^2 &= q \end{align*} $$