Arithmetic

My solutions to the problems in the excellent book on Problem Solving by Loren Larson.

By Vamshi Jandhyala in mathematics problem solving

April 22, 2020

Problem 3.5.6

a. Given that $13=2^2+3^2$ and $74=5^2+7^2$, express $13 \times 74=962$ as a sum of two squares.

Solution

Let $z=2+3i,w=5+7i$.We have

$$ \begin{align*} 13 \times 74 = |z|^2|w|^2=|zw|^2 = |-11 + 29i| = 11^2+ 29^2 \end{align*} $$

Problem 3.5.8

Show that

$$ \begin{align*} {n \choose 1} -{n \choose 3} + {n \choose 5} - {n \choose 7} + \cdots = 2^{n/2}cos\frac{n\pi}{4} \end{align*} $$

and

$$ \begin{align*} {n \choose 0} -{n \choose 2} + {n \choose 4} - {n \choose 6} + \cdots = 2^{n/2}sin\frac{n\pi}{4} \end{align*} $$

Solution

We have

$$ \begin{align*} (1+i)^n &= {n \choose 0}+ i{n \choose 1} - {n \choose 2} - i{n \choose 3} + \cdots \\
(1-i)^n &= {n \choose 0}- i{n \choose 1} -{n \choose 2} + i{n \choose 3} + \cdots \\
\end{align*} $$

Therefore,

$$ \begin{align*} {n \choose 0} -{n \choose 2} + {n \choose 4} - {n \choose 6} + \cdots &= \frac{(1+i)^n + (1-i)^n}{2} \\ &= 2^{n/2}\frac{e^{in\pi/4} + e^{-in\pi/4}}{2} \\
&= 2^{n/2}cos\frac{n\pi}{4}\\
{n \choose 0} -{n \choose 2} + {n \choose 4} - {n \choose 6} + \cdots &= \frac{(1+i)^n - (1-i)^n}{2} \\&= 2^{n/2}\frac{e^{in\pi/4} - e^{-in\pi/4}}{2} \\
&= 2^{n/2}sin\frac{n\pi}{4} \end{align*} $$

Problem 3.5.9

By considering possible magnitudes and arguments,

a. find all values of $\sqrt[3]{-i}$;

Solution

a. We have $-i= e^{2k\pi - \pi/2}$.Therefore,

$$ \begin{align*} \sqrt[3]{-i}= e^{2k\pi/3 - \pi/6} \end{align*} $$ where $k=0,1,2$.

Problem 3.5.14

Show that if $e^{i\theta}$ satisfies the equation $z^n + a_{n-1}z^{n-1}+\dots+a_1 z+a_0=0$, where the $a_i$ are real, then $a_{n-1}sin\theta + a_{n-2}sin2\theta + \dots + a_1sin(n-1)\theta + a_0sin(n\theta)= 0 $.

Solution

If $e^{i\theta}$ is a solution of the equation, then $e^{-i\theta}$ is also a solution of the equation as the coefficients are real.We have

$$ \begin{align*} a_n + a_{n-1}e^{i\theta} + \dots + a_0e^{in\theta} = 0 \end{align*} $$

Equating the imaginary part of the above equation to zero, we get

$$ \begin{align*} a_{n-1}sin\theta + a_{n-2}sin2\theta + \dots + a_1sin(n-1)\theta + a_0sin(n\theta)= 0 \end{align*} $$